中国科学院院士、中国科学技术大学教授郭光灿领导的中科院量子信息重点实验室在测量设备无关量子密钥分配研究方面取得进展,实验室量子密码研究组的银振强、王双、韩正甫、陈巍等在国际上首次实现“环境鲁棒型”测量设备无关量子密钥分配实验系统,利用扰偏装置,消除了实地信道偏振扰动的影响,解决了MDI-QKD系统在复杂环境下的实用化问题,增强了系统的实际安全性与运行效率。研究成果发表在Optica上。

量子密钥分配基于量子力学的原理,可以在信息论的层面实现通信双方之间无条件安全的密钥传输。但是由于实际器件和设备的不完美,量子密钥分配实际系统的安全性与理论协议之间存在着一定的差距。从协议层面而不只从技术参数对抗的角度解决系统的实际安全问题,是当前研究者探讨的重点之一。2012年,加拿大H.
K.
Lo研究组提出了MDI-QKD协议。该协议无需对测量端的量子设备进行任何安全性假设,就能够有效地免疫所有探测端攻击,有效提升了量子密钥分配系统的实际安全性,受到了国际上的广泛关注。

中科大在新型量子密钥分配研究上取得重要进展

该工作得到了科技部、国家自然科学基金委、中科院和教育部的资助。

这项工作得到了科技部、国家自然科学基金委、中科院和教育部的资助。

中科院量子信息重点实验室的银振强、王双、陈巍、韩正甫等在理论上完善了该协议的安全性证明,以此为基础在国际上首次实现了分组脉冲数最小、安全距离最长的RRDPS协议,解决了该协议在实际信道条件下分组脉冲数过多、效率偏低的问题。

MDI-QKD对实地信道的偏振敏感特性仍然是制约该协议在实际复杂环境中实用化的关键因素。为解决该问题,韩正甫研究组通过改进参考系无关MDI-QKD系统,在发送端增加扰偏装置,在测量端采用偏振态分离探测结构,设计并实验验证了“环境鲁棒型”MDI-QKD方案。通过摒弃MDI-QKD协议执行中的主要参考系校准过程,该方案不仅能够消除设备端和信道环境扰动对系统性能产生的影响,保障系统在复杂实地条件以及多用户网络环境下的鲁棒性,而且有效避免了参考系校准过程引入的潜在安全性漏洞,并进一步降低了在实际使用环境下的资源消耗,极大提高了MDI-QKD多节点网络的部署效率,对量子密钥分配技术的实用化发展具有重要参考价值。

文章链接

然而该协议仍存在一些关键问题没有解决。首先在理论上,现有的安全性证明对信息泄露的计算较为粗糙,还不能定量描述窃听者攻击行为、系统误码率和信息泄露的内在关系;实验上需要的脉冲分组数L过大,实现有效测量的装置较复杂,这也限制了该协议的实用化。

MDI-QKD是加拿大H.K.Lo研究组2012年提出的新型量子密钥分配协议。它利用时间反演的纠缠分发方案,将测量端看成一个黑盒子,避免了对测量设备提出的可信要求,从而免疫了所有针对测量端的攻击,提高了量子密钥分配系统的实际安全性。在该协议中,异地全同光子的高效干涉是保障其有效稳定运行的重要前提,其要求通信双方发送的光子脉冲在波长、时间以及偏振状态等自由度均不可区分,并且量子态编解码的参考基准需保持一致。这些要求是目前MDI-QKD系统在复杂环境下实用化需要解决的关键技术难题。

中国科学技术大学教授、中国科学院院士郭光灿领导的中科院量子信息重点实验室在探测设备无关型量子密钥分配的研究方面取得新进展:该实验室量子密码研究组的银振强、王双、韩正甫、陈巍等在国际上首次实现了无需参考系校准的测量设备无关型量子密钥分配实验系统,显著增强了系统的实际安全性和工作稳定性,对推动此类设备无关型量子密钥分配技术在实际环境中可靠、稳定的应用具有重要意义。该研究成果作为编辑推荐发表在10月15日的《物理评论快报》上,实验室的博士生王超、宋萧天是该系列工作的共同第一作者。

论文链接

2015年,韩正甫研究组实现了无需编解码参考系校准的测量设备无关量子密钥分配实验系统[Phys.Rev.Lett.115,160502],有效消除了环境干扰对编解码空间的影响,避免了通信者之间编解码参考系校准过程引入的系统开销和安全隐患,有效提升了MDI-QKD在复杂设备环境下的可用性。

研究组基于MDI-QKD协议中的Bell态投影测量的思想,通过将经典信息编码到光子路径这一物理量上,有效地避免了环境干扰对编解码的影响,设计了无需参考系校准的MDI-QKD协议。协议通过对路径中的编解码单元进行相位调制和解调,可以有效地监测系统的工作状态和安全参数。课题组进一步基于具有自主知识产权的“法拉第-迈克尔逊”干涉仪结构,通过对其增加光量子高速路径选择单元,实现了满足MDI-QKD要求的环境干扰免疫的光量子相位编解码干涉仪。研究组同时解决了独立光源量子干涉、异地时钟精准同步、线路自动纠偏等MDI-QKD系统实现中的关键技术问题,首次在实验上有效验证了无需参考系校准的MDI-QKD协议的安全性和稳定性。实验结果证实这一方案可以有效降低通信者之间对参考系校准的要求,避免了在参考系校准过程中引入额外的系统开销或安全隐患,可以有效提升测量设备无关量子密钥分配技术在复杂网络环境下的可用性。

中新社合肥2月2日电
记者2日从中国科学技术大学获悉,该校科研人员在环回差分相位量子密钥分配研究方面取得重要进展——在国际上首次实现了分组脉冲数最小、安全距离最长的RRDPS协议。

然而,与BB84等协议类似,该协议的有效执行需要量子态制备与测量时的参考基准严格一致,否则将产生系统误码,极大地降低安全密钥生成率并造成安全隐患。由于系统收发各方所处的环境不同且在不断变化,因此通信双方或者多方之间参考系的校准是必不可少的。参考系校准过程将消耗更多的系统资源,且有可能引入额外的安全隐患。特别是在复杂的网络应用环境下,多个参考系之间的校准工作将可能严重的影响其有效的密钥生成能力和稳定性。

这一研究成果近日发表在国际权威学术期刊《自然通讯》(《Nature
Communications》)上。

为解决这些问题,中国科研人员首先在理论上完善了RRDPS协议的安全性证明。仿真计算表明,基于这一新的安全性证明,RRDPS协议的密钥率和安全距离等关键指标都有了显著提高,且其所需的脉冲分组数L相对于原始协议大大减少,这对于降低RRDPS系统的实现难度、提升其实用性有着重要意义。

为了进一步验证该理论,韩正甫研究组还实现了L=3的最简RRDPS演示实验。实验在30km光纤信道上实现了免误码检测的密钥分发;如果结合信道扰动参数,安全距离则可以达到140km。该成果对于丰富高维量子密钥分发的安全性分析理论和方法,提升系统的实用性有着重要参考价值。

RRDPS是日本和美国科学家2014年提出的新型量子密钥分发协议。该协议无需监测信号扰动参数,即可实现对窃听者信息量的估计,也从量子密钥分发协议的设计基础上实现了突破,在实际应用中,免信道扰动监测也带来了系统简化、误码率容忍高的优势,因此引起了学术界的浓厚兴趣。

Author

发表评论

电子邮件地址不会被公开。 必填项已用*标注

相关文章